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1. Initialize population of candidate  
core stratification matrices 
(1:training, 0:validation).

…

2. Compute marker distributions 
based on cells from selected cores.

−

3. Compute fitness of matrices, 
defined by difference (MSE) from 
ideal 80% train set stratification.

Cyclic multiplexed immunofluorescence (cmIF) enables deep cell state characterization of breast cancer tissue microarrays (TMAs)

A simple genetic algorithm ensures balanced training/validation stratification of TMA cores for cmIF representation learning 

…

4. Allow only fit matrices to 
reproduce/cross-over/mutate in 
following generations of 
stratification. 

5. Repeat from 2 until convergence.

• To model such heterogeneity, we must 
uniformly balance cell state distributions 
between training and validation 
datasets.

• Cell populations vary widely 
between TMA cores, 
necessitating principled 
stratification of cores.

• Marker distributions highlight 
pitfall of random stratification.

• Random core stratification is prone to over- and under-sampling of markers, 
as highlighted by these 5 simulations (red line is ideal train set stratification).

• Genetic core stratification balances training/validation sets across all markers. 

Algorithm

• cmIF lends itself to a multi-label learning paradigm, but training/validation stratification is not trivial.  
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Stratification method
(best 5 MSEs from 108 simulations)marker

Genetic stratification of TMA cores into training/validation sets yields a more generalizable cell state inference model
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• Following either genetic or random data stratification, Resnet18 models4 are trained to infer a 22-marker target vector given an input image of a DAPI-stained nucleus; the model trained using genetic stratification generalizes better on 19 of 22 markers.

• For example, when applied to breast cancer TMAs, cmIF reveals that the 
subset of cytokeratin-positive (CK+) cells exhibits heterogeneous 
expression of basal and luminal CKs.

• High-dimensional imaging methods like cmIF1 enable 
unprecedented in situ cell state characterization through 
iterative labeling of tens of markers within the same tissue.

• A model which infers cell state using low-cost and widely available reagents 
like DAPI—even if only a limited number of cell state features—could bring the 
benefits of cmIF to more patients and in a clinically relevant timeframe.

• Here we present a proof-of-
concept framework optimized for 
learning generalizable 
representations of cell state and 
which objectively measures the 
information content of nuclear 
morphology as visualized by DAPI.

• Cell state characterization is essential to patient diagnosis 
and treatment and can be defined by a cell’s morphology 
or the markers it expresses.

• Operating under the assumption that morphology reflects features 
of cell state,2,3 here we present a balanced deep learning 
framework that leverages the nuclear morphology of cells as 
visualized by DAPI staining to infer features of their state.

• Awareness of cell state at this resolution can augment 
diagnostic and prognostic decision-making.
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Model performance is correlated with 
marker prevalence in dataset

Conclusions and ongoing workModel attention 
reveals salient features
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• Learned cell state representations can facilitate virtual staining of human 
biopsy tissues based on hematoxylin and eosin2,3 and DAPI stains alone.
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• The model performs 
best on the most 
prevalent markers.
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work

• Pre-conditioned models 
trained on independent 
cell subtypes—e.g. 
immune, cancer, 
stromal—may yield 
improvements, 
especially for cell 
subtypes with exclusive 
and rare markers, e.g. 
FoxP3+ or GRNZB+ 
immune cells.


