Balanced learning of cell state representations
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Cyclic multiplexed immunofluorescence (cmlF) enables deep cell state characterization of breast cancer tissue microarrays (TMAs)

« Forexample, when applied to breast cancer TMAs, cmlF reveals that the

. 1 PV « cmlF lends itself to a multi-label learning paradigm, but training/validation stratification is not trivial.
subset of cytokeratin-positive (CK+) cells exhibits heterogeneous

» Cell state characterization is essential to patient diagnosis
and treatment and can be defined by a cell's morphology , . o s e
expression of basal and luminal CKs. KIG0KTACKBACKS K144 721 cl

Or the markers it expresses. === CK19-/CK7-/CK8-/CK5+/CK14+ - 5327 cells

Awareness of cell state at this resolution can augment iR O A . . .
High-dimensional imaging methods like cmIF! enable - : - Lo - A unique patient tissues,
9 ging diagnostic and prognostic decision-making. o o s i [ CXICKCKO OGS OK14-2468 ol

unprecedented in situ cell state characterization through R KRR - st m——— CKIHOTOKBAS 14 Sols all labeled by cmlF Image of
. . . . 7 e CK19-/CK7+/CKB+/CKS+/CK14- - 3003 cells e B 3 e DAPI-stain ed
uniformly balance cell state distributions o , KoK e CKIBOKTHOKBHOKSHOK14: - 465 o
/ \ 5 | CK18-/CK7-/CKB+/CKS- - 31226 cells. cell nucleus
Canonical BC
I receptors d atasets. S g i CK19-/CK7+/CKB+/CK5-/CK14- - 12055 cells
U n Sta I n ed p CK19-/CK7+/CK8- - S iy CK19-/CK7+/CK8-/CK5-/CK14- - 28263 cells

iterative labeling of tens of markers within the same tissue. To model such heterogeneity, we must B —— o ———_e
between training and Validation ] ci19-/CK7-/CK8+/CKS-/CK14- - 31168 cells
tissue core + DAPI [ cxiorcxrs - soers coe

TMA contains cores from For each cell we obtain:

Proposed model

CK19-/CK7+/CK8+/CK5-/CK14+ - 81 cells
CK19-/CK7+/CKB-/CK5-/CK14+ - 610 cells

e CK194/CK7-/CKB-/CK5+/CK14+ - BO7 cells
= CK19+/CK7-/CKB+/CK5+/CK14- - 5693 cells
= CK19+/CK7-/CK8+/CK5+/CK14+ - 365 cells

CK194/CK7-ICKB-/CKS-/CK14+ - 411 cells
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CK19+/CK7-/CK8+/CK5-/CK14+ - 251 cells

CK19+/CK7-/CK8-/CK5-/CK14- - 52201 cells ' [ ,] O ]
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CK19+/CK7-/CK8+/CK5-/CK14- - 39097 cells

’ . = = CK19+/CK7+/CK8-/CK5+/CK14+ - 6764 cells A
1 cmsmm.m@om% - [ CK19+/CK7+/CKB-/CK5+/CK14- - 14002 cells ; .
CKIOHCK7HIOKE-ICKS-CK14+ - 1945 ol : Cell state vector describing
N ) CK19+/CK7+/CK8+/CK5+/CK14+ - 12886 cells .
presence/absence of each
cmlIF marker in cell Target [011 :1:---10]

Learn easy markers first,
use as prior to learn
challenging markers /

Differentiation — [ B NS S
. markers U N [O—— B
X 1+ DAP « Operating under the assumption that morphology reflects features Sy T Y [O 11 O]
2. of cell state,23 here we present a balanced deep learning \ - ‘ e
framework that leverages the nuclear morphology of cells as 184107 CKBACKS K14 197410 cols

visualized by DAPI staining to infer features of their state.

A simple genetic algorithm ensures balanced training/validation stratification of TMA cores for cmIF representation learning

« Cell populations vary widely — (~ k Algorithm ) A « Random core stratification is prone to over- and under-sampling of markers,

. Allow only fit matrices to L : : L : -
between TMA cores, 1. Initialize population of candidate reproducg/cross—over/mutate - as highlighted by these 5 simulations (red line is ideal train set stratification).

necessitating principled core stratification matrices 2. Compute marker distributions following generations of
stratification of cores. (1:training, 0:validation). based on cells from selected cores. stratification.
Repeat from 2 until convergence.
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;;]' « Genetic core stratification balances training/validation sets across all markers.
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3. Compute fitness of matrices,
defined by difference (MSE) from
ideal 80% train set stratification.
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* Marker distributions highlight *p=0.038

pitfall of random stratification.
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Genetic stratification of TMA cores into training/validation sets yields a more generalizable cell state inference model

« Following either genetic or random data stratification, Resnet18 models* are trained to infer a 22-marker target vector given an input image of a DAPI-stained nucleus; the model trained using genetic stratification generalizes better on 19 of 22 markers.
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Model attention Model performance is correlated with Conclusions and ongoing work
reveals salient features marker prevalence in dataset Virtual HER2

Here we present a proof-of- DAPI (model output)
concept framework optimized for (medelinput) )
learning generalizable

representations of cell state and

which objectively measures the

information content of nuclear

morphology as visualized by DAPI.

Predicted: CK19_Ring Predicted: CK7_Ring -
Probability: 0.74611 Probability: 0.78202 ey CK19

Target: 1 _ o Target: 1 ” : The mOdel perfOrmS
' | - o best on the most
prevalent markers.

Real HER2

Pre-conditioned models

trained on independent
cell subtypes—e.g. Learned cell state representations can facilitate virtual staining of human

immune, cancer, biopsy tissues based on hematoxylin and eosin?3 and DAPI stains alone.

Pditd:KiG7_N lei redicted: uclei B - 1 o o o . .
Probability: 0.8209501 Probabitity: 0.93971 1 stromal-may yield A model which infers cell state using low-cost and widely available reagents

Target: 0 Target: @

improyements, like DAPlI—even if only a limited number of cell state features—could bring the
especially for cell benefits of cmlF to more patients and in a clinically relevant timeframe.
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