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Abstract1

Accurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further2

spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining3

provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful4

tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic5

origin. Although deep learning models require significant training data to learn effectively, transfer learning6

paradigms provide mechanisms to circumvent limited training data by first training a model on related data7

prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that8

trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images9

of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network10

on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between11

primary and metastatic tumors of various indications on patch-level images to highlight limitations of our12

indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we13

achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which14

outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or15

trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary16

tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.17
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1 Introduction20

Cancers that spread to distal regions of the body are referred to as metastatic cancers, and often present a21

significant adverse clinical milestone of cancer evolution that accounts for a majority of deaths associated22

with solid tumors[1]. By invading into nearby tissue, or navigating transportation systems such as lymph or23

blood circulation, metastatic cancers cells migrate to new locations throughout the body where they can24

establish new residence and continue to proliferate. Common sites for cancer metastasis are the lung, bone,25

brain, and liver, each of which presents distinct microenvironmental conditions and factors that may affect26

the cancer cell’s capacity to divide and spread further[2]. Because cancer cells that have metastasized retain27

capacity for dislocation and traversal, and because many different cancer types can metastasize to the same28

site, accurate inference and diagnosis of metastatic cancer is essential for devising treatment strategies to29

control and halt further metastatic processes.30

Generally, cancers that metastasize from one site, such as the colon, into a new site, such as the liver, retain31

similar morphological and structural features. Seen under a microscope, a colon cancer that has metastasized32

to the liver will generally appear more similar to a primary colon cancer than to a liver cancer that has yet33

to metastasize. Clinically, pathologists rely on visual inspection of H&E stained section of metastatic tumor34

tissue to infer the cancer’s origin. However, in challenging cases where a metastatic diagnosis is not readily35

obvious, confirmatory assays such as immunohistochemistry (IHC) staining can provide definitive diagnosis36

with which to guide treatment.37

We previously demonstrated a learning system trained to classify whole slide images of cancers that had38

metastasized to the liver according to the tumor’s tissue of origin[3]. That work was limited to three of the39

most commonly recurring classes of metastatic cancer due in part to limited data availability of other classes40

of metastatic cancers. This work seeks to leverage morphological and spatial properties of primary tumor41

tissue to enhance the performance of a classification model trained to infer the origin of secondary metastatic42

cancer based on histopathological presentation in digital whole slide images. Similarities between primary43

and metastatic tumors have shown striking similarity in gene expression[4], growth characteristics[5], and44

chromosomal rearrangement[6] and more recent work has leveraged passenger mutations to accurately classify45

primary and metastatic cancer based on genomic signatures [7]. Motivated by primary-metastatic structural46

similarity evident in whole slide histology, this work seeks to evaluate whether a computer vision system47
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trained to classify primary cancers retains predictive power when inferring the origin of metastatic cancer48

based on similarities in tissue morphology.49

Training a model in one setting and transferring it into a different setting is an example of a transfer50

learning paradigm. These approaches have demonstrated robust capacity for boosting model performance[8],51

and have found wide use in the field of deep learning for computer vision applications[9, 10]. This work52

extends previous analyses by evaluating the degree to which a computer vision model generalizes to unseen53

samples of whole slide metastatic cancer by training on only primary cancers, only metastatic cancers, and54

by first training on primary and transferring the learning model to retrain on metastatic samples. Further,55

this work evaluates the divergence between primary and metastatic cancers of different types within learned56

unsupervised morphological feature space, and draws connections between the degree to which primary and57

metastatic cancers are dissimilar and how well models generalize to correctly predicting metastatic origin of58

different cancer types.59

2 Materials and Methods60

An overview of the computational pipeline developed in this work is shown in Figure 1. Our approach61

separates the study objectives into two components. The first portion of the study pre-trains a neural network62

classifier to predict tumor type from whole slide images of primary cancers, while the second portion transfers63

the learned classification model from primary cancers into a data set composed of metastatic tumors to infer64

the samples’ metastatic origin. To evaluate the efficacy of a primary-to-metastatic learning paradigm, we65

compare metastatic classification performance from three models, a first model trained only on images of66

primary tumor, a second model trained only on images of metastatic tumor, and a third model first trained67

on primary cancers that is then transferred to and fine-tuned within the metastatic cancer setting.68

Because whole slide images are large and heterogeneous, they often contain both tumor and non-tumor69

tissue. This mixture of tissue types has been shown to confound the degree to which classification models70

are generalizable, and so both components of this study employ a model to first identify tumor tissue from71

non-tumor tissue within the whole slide image trained on manual annotation of whole slide images by a72

board-certified pathologist. Annotated whole slide images are divided into training and test sets from which73

a ResNet50[11] deep learning model was trained to generate binary classifications of tumor and non-tumor74

tissue at patch-level resolution. These preliminary filter models are deployed onto their respective whole75

data sets to filter out normal stroma tissue from the tiled data sets such that the resultant data sets are76

composed of tumor tissue. Secondary models are then trained to correctly classify the tumor tiles according to77

their tissue of origin as informed by the clinical diagnostic record. Generally, metastatic cases are differently78
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prevalent in clinical records, resulting in imbalanced representations of metastatic classes. In this work,79

samples were collected from fourteen common tumor types from both primary and metastatic cancers that80

metastasize to the liver, as shown in Figure 2A.81

2.1 Data Acquisition and Pre-processing82

This work employs a dataset composed of 324 whole slide images of metastatic cancers and 344 whole83

slide images of primary cancer collected from the Knight BioLibrary and Knight Diagnostic Laboratories at84

Oregon Health & Science University (OHSU). Each whole slide image is divided into non-overlapping tiles85

128× 128× 3 pixels wide that cover 100 µm square. Tiles containing predominantly white background light86

were filtered out and the remaining tiles were color-normalized to a reference staining density[12]. Annotation87

tables associate each whole slide image with its tissue of origin informed by the clinical diagnostic record88

which are employed as the target variables for the classification model. In this work, while predictions are89

made on per-tile basis by the learning model, whole slide predictions are made as the mean prediction of each90

slide’s constituent tiles. The inherent class imbalance in the metastatic whole slide training set presented a91

limiting factor for previous work [3], which was limited to three principal classes of metastatic origin. This92

challenge is intended to be overcome in part by a transfer learning paradigm by which a larger related data93

set may be utilized to overcome class imbalance limitations for rare cases in metastatic cancers.94

Annotations of tumor regions are used to train a tumor identification model and were drawn by an expert95

pathologist using the QuPath[13] software tool for 78 whole slide images spanning all fourteen distinct primary96

tissue types. Annotations were computationally extracted and employed to label each tile sampled from each97

of the 78 whole slide images as either belonging to a region annotated as tumor or not, in which case the tile98

is labeled non-tumor. The tumor-identification model is similar to previously-described work [3] in which a99

convolutional neural network was trained to identify tumor regions based on pathologist annotation.100

2.2 Learning System Architecture101

This study seeks to evaluate whether transfer learning from primary cancer cases into the metastatic cancer102

classification setting confers a computational advantage compared to primary- or metastatic-specific training.103

Here we utilize the ResNet50 learning architecture for both tumor region identification and tumor type104

classification. ResNet50 is a widely-used convolutional neural network based learning architecture that has105

been broadly applied to challenges in digital pathology[14, 15, 16]. We adopted the ResNet50 model and106

modified its output layer to contain fourteen nodes, each corresponding to one of the fourteen sites of tissue107

origin, and a softmax activation function such that the vector of output values sums to one, thereby enabling108
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a probabilistic interpretation of the model’s output. We trained a single ResNet50 model for 10 epochs with109

a learning rate of 0.001 and batch size of 32 on the training set of whole slide image tiles in parallel on110

four Nvidia V100 GPUs for a total of 80000 weight update steps. Data loaders were designed to generate111

batches of data with the same data transforms that include flipping, rotating, and color scaling by saturation,112

brightness, and hue with class-balancing. In all cases, the Adam optimizer [17] was employed with a learning113

rate scheduler designed to decimate the learning rate at the end of each epoch. Data loaders were specifically114

designed to balance class representation to maximize class diversity with each batch of training data. To115

evaluate the transfer learning approach, a third model is trained for 5 epochs on primary cancer and fine-tuned116

for 5 epochs on images of metastatic cancer.117

3 Results118

This first-stage model designed to identify tumor tissue within whole slide histology is evaluated on a held-out119

test set and achieves an area under the receiver operator characteristics curve (AUROC) of 0.88, which is120

similar to the AUROC of 0.92 achieved on training data, shown in Figure 2B and 2C. Using this model121

as a first-stage tumor filter, the remaining tiles are passed through for classification according to the three122

approaches described above. The receiver operator characteristic curves for each of the three modeling123

approaches for correctly classifying metastatic origin of whole slide histologies are shown in Figure 3. In general,124

we observe a consistent improvement in classification when employing the transfer learning approach, shown125

in green, particularly in cases of cystadenocarcinomas, sarcomas, and colonic adenocarcinomas. However, we126

also observe a few instances where transfer learning appears to confer a negative effect on model performance,127

such as in the case of adrenal cortical carcinomas, gastrointestinal stromal tumors, and tumors of kidney128

origin. Underlying explanations for drop in performance using transfer learning for these cases are not129

fully understood, though performance differentials may be at least partially explained by indication-specific130

morphological heterogeneity and limited available training data to adequately capture all degrees of spatial131

variation. Nevertheless, we report a mean AUROC for the primary-to-metastatic transfer learning model of132

0.779, which outperforms a similar model trained only on primary tumors (mean AUROC of 0.691) and a133

similar model trained only on metastatic tumors (mean AUROC of 0.675).134

3.1 Spatial and Differential Predictions135

The ROCs shown in Figure 3 evaluate classification performance for each class with respect to each of the136

remaining classes, providing a metric for how often the learned model’s maximum likelihood prediction137

correctly aligns with the true metastatic origin associated with each sample. Here we evaluate both spatially-138
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refined predictions as well as the differential diagnoses generated by the best-performing model. Figure 4A139

illustrates how per-tile predictions are distributed within an example whole slide image. Class-confusion140

matrices are shown in Figure 4B which illustrate the degree to which certain cases are mistaken for others.141

In this example case shown in Figure 4A, the clinical diagnosis is a squamous carcinoma tumor, yet the142

model incorrectly predicted the case to be a gastrointestinal stromal tumor with 35% confidence. However,143

squamous carcinoma was the second most likely class with a model confidence of 18.3%. This perspective144

reflects that of a clinician’s differential diagnosis which may consider a set of underlying conditions responsible145

for manifestation of disease. We interpret the model’s differential diagnoses as the most likely predictions146

apart from the most likely prediction, analogous to how a practicing pathologist may suggest several potential147

indications which require confirmation through secondary assay such as an immunohistochemistry stain.148

Figure 4C illustrates this differential diagnosis for the trained model by plotting the rank of the true label on149

the x-axis. In the example shown in Figure 4A, the rank of the true label would be two, since the correct150

label was the model’s second most-likely prediction and the model’s confidence in that prediction on the151

y-axis. In this analysis we observe a steep roll-off as we move to the right, suggesting that although the152

model’s most likely prediction is correct 55% of the time, the probability that the correct guess is within the153

top six predictions from fourteen tumor types is greater than 90%.154

3.2 Primary-Metastatic Feature Divergence155

We next test the hypothesis that structural or morphological differences between primary tumors and their156

metastatic counterparts may affect the efficacy of our transfer learning approach. In this analysis, we randomly157

sub-sampled 5000 tiles from each of the 14 classes across each of the whole slide images in the study. As158

a sanity check, we include all tissue samples from normal liver from both primary and metastatic cancers,159

but otherwise filter out normal tissue from other origins using the classification models described above.160

With these tiles we train a 64-feature variational autoencoder (VAE) [18] to learn a latent representation of161

each of the histopathological tiles included in the entire data set used in this study. Latent representations162

are embedded into two dimensions using the t-stochastic neighbor embedding algorithm [19] and shown in163

Figure 5A. The 2D coordinate tSNE plane is faceted according to the densities of tiles drawn from each of164

the fourteen tumor types being classified and colored according to whether the tiles are drawn from images of165

either primary or metastatic tumor tissue. Intuitively, two distributions that are identical, meaning they166

share the same morphological features and image content, should perfectly overlap with each other, such as167

the instances of normal liver, which are expected to be highly concordant between primary and metastatic168

cancers. In principle, if tiles of a given cancer type look identical in both primary and metastatic images,169
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then their distributions of tiles should perfectly overlap in this feature representation. Other examples170

show similar but not complete overlap, particularly in the cases of colonic adenocarcinomas and pancreatic171

adenocarcinomas. However, other samples appear to be more widely distributed and non-overlapping, such as172

neuroendocrine carcinomas and squamous carcinomas. Some cases, such as leiomyosarcomas, appear strongly173

bimodal, suggesting that some tiles share similar features while others do not.174

We quantify the degree to which two non-overlapping distributions differ using the Kullback-Leibler175

divergence metric. This metric is computed for each of the learned latent features and visualized as a pair of176

boxplot distributions in Figure 5B which capture the difference between each class of primary tumors with177

respect to everything else in the dataset (red boxes), and with respect to the class’ metastatic counterparts178

(blue boxes). We compute the mean KL divergence across each of the learned features to quantify the179

statistical dissimilarity between primary and metastatic tiles across each of the fourteen classes, and then180

measure the correlation between mean KL divergence and the model’s reported per-class AUROC performance,181

shown in Figure 5C. We measure a slight linear association with a correlation of 0.317, suggesting a very slight182

association between a greater divergence between primary and metastatic samples and model’s classification183

performance in the transfer learning setting.184

4 Discussion185

This work illustrates that incorporating primary tumor histology into pre-training a histopathological186

classification of metastatic samples confers advantage in classification performance relative to models trained187

only on images of primary or only on images of metastatic tumors. Further, we illustrate that the degree to188

which primary and metastatic cancers may be statistically similar based on image content may affect the189

degree to which transfer learning benefits the modeling process.190

This work has a number of limitations that may limit the extensibility of its findings. In particular, this191

study was limited to fourteen distinct classes of metastatic origin that were treated independently within192

the learning model. Future efforts may necessitate larger data sets with greater class-specific coverage to193

ensure robust ability to generalize both inter- and intra-class accuracy. This work also ignores shared latent194

features of tumor tissue that may be clinically relevant to rendering an accurate diagnosis of metastatic origin.195

Namely, this work ignores any other clinical feature of interest that may be relevant to this task, such as196

age, gender, medical history, and incidence of other disease phenotypes. This work also presents the clinical197

challenge of inferring metastatic origin in a simplified setting, when in practice a pathologist uses both other198

clinical covariate factors as well as obtainable results from axillary testing such as immunohistochemistry or199

genomic sequencing to guide their diagnostics.200
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The use of unsupervised feature extraction methods to infer feature divergence between primary and201

metastatic cancers also has a number of limitations. Like other efforts that incorporate these kinds of learning202

models, the learned feature space is subject to discrepancies, a lack of interpretability, and inconsistency in203

feature space embedding with similar input images. Although exploratory, it might be reasonable to use204

the relative dispersal of samples within a learned feature space to infer the heterogeneity or variability of205

intra-class samples so as to guide researchers in determining an adequate number of representative samples206

so as to cover an inferred feature space.207

This work presents a number of future directions, in particular opening up the opportunity to explore208

clinical application of augmented inference of metastatic origin on a pathologist’s classification performance209

and with respect to the selection of confirmatory immunohistochemistry stains chosen to infer metastatic210

origin. Overall these results reinforce the importance of pre-training computer vision systems in digital211

pathology as a mechanism to overcome limitations in data set size for niche questions of narrow scope. Future212

efforts are expected to expand upon these findings by incorporating large public data sets into training213

paradigms to further enhance the capabilities of computer vision systems to infer the origin of metastatic214

cancers from whole slide histology.215
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Figure 1: Transfer learning concept designed to leverage morphological and spatial features of primary
cancer to infer the metastatic origin of secondary cancers. Whole slide images are tiled into non-overlapping
square patches of 128 pixels at 20x magnification. In the top diagram, a subset of whole slide images are
annotated by an expert pathologist to identify tumor tissue in the slide. These annotations are then employed
to train a first-stage classification model that identifies tiles containing tumor tissue. The filter model is
applied to the remaining data to identify tumor tissue within each of the whole slide images. Tiles classified
as tumor tissue are then passed through a second model trained to correctly classify primary tumor type
based on clinical annotation of the whole slide. In the bottom diagram, a similar first-stage classification
model is trained to filter normal tissue surrounding the metastatic cancer prior to a second-stage model
trained to correctly classify the metastatic origin of the tumor tissue. We evaluate the efficacy of transfer
learning by fine-tuning a learning model trained on primary tumors with images of metastatic cancers.
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Figure 2: (A) Data used in this study for both primary and metastatic examples. Due to limitations in data
availability for rare metastatic cancers, data is imbalanced in both whole slide and tile bases. To evaluate the
efficacy of a primary-to-metastatic transfer learning paradigm, we explicitly balance a dataset of primary
tumors to contain the same number of whole slide images. Variation in tile counts is due to natural variation
in histological specimen size. (B) First-stage tumor filtering classification model performance on held-out
testing data (red line, AUROC of 0.88) is similar to performance on seen training data (blue line, AUROC
0.92). (C) Confusion matrix of tumor filter model trained on pathological annotation of tumor regions within
whole slide images.
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Figure 3: Receiver Operator Characteristics (ROC) curves shown for each of the fourteen class predictions
by each of the three training strategies described above: exclusively trained on primary tumors, exclusively
trained on metastatic tumors, and the proposed primary-to-metastasis transfer learning approach. In general,
transfer learning confers a clear benefit to the model’s class-specific performance. However, adrenal cortical
carcinomas and gastrointestinal stromal tumors appear to be exceptions in which transfer learning may
adversely affect model performance. In each case we stratify the classification by tile (solid line) and by whole
slide image (dashed line)
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Figure 4: (A) Example heatmap showing spatially-resolved class-specific predictions made on each tile. This
particular case shows a squamous carcinoma tumor, yet was incorrectly predicted to be a gastrointestinal
stromal tumor by our model with 35% confidence. However, squamous carcinoma was the second most likely
class with model confidence of 18.3%. (B) Confusion matrix from the held-out test set illustrating improved
performance on whole slide images with respect to per-tile predictions. (C) Rank-confidence plot illustrating
the degree to which the model confuses the correct prediction. A steep roll-off is reflected in the inset figure
which measures the cumulative distribution of the rank-confidence values and suggests that while the model
might not correctly predict the true class as its first choice, the correct choice is likely to be within the top
six predictions with 90% likelihood.
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Figure 5: (A) A tSNE projection of image patches projected into two dimensions based on a learned
representation of image content. Densities of tiles are shown for both primary and metastatic cases for
each of the fourteen tumor types. Intuitively, if two distributions were perfectly overlapping, then their
image content and tissue morphology distributions would be identical from images of primary and images of
metastatic cancers. However, distributions that differ suggest shifts in morphology or image content following
metastasis. (B) Quantitative estimation of distributional separation is computing using the Kullback-Leibler
divergence (KLD) metric. The blue boxplots measure divergence between each primary tumor type to each
other metastatic tumor type, while the red boxplots measure divergence between each primary tumor type to
every other primary tumor type. (C) Plotting the KLD of each tumor type’s primary-metastatic divergence
with respect to the model’s performance as measured by the area under the receiver operator characteristics
curve (AUROC) reveals weak positive correlation, suggesting that increases in the divergence between primary
and metastatic tile populations may only marginally improve the efficacy of transfer learning.
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